A Newton-scheme Framework for Multiscale Methods for Nonlinear Elliptic Homogenization Problems∗
نویسندگان
چکیده
In this contribution, we present a very general framework for formulating multiscale methods for nonlinear elliptic homogenization problems. The framework is based on a very general coupling of one macroscopic equation with several localized fine-scale problems. In particular, we recover the Heterogeneous Multiscale Method (HMM), the Multiscale Finite Element Method (MsFEM) and the Variational Multiscale Method (VMM) from the framework. In order to solve the arising equations, we also present a solution algorithm that is based on a Newton scheme with damping.
منابع مشابه
Analysis of the finite element heterogeneous multiscale method for nonlinear elliptic homogenization problems
An analysis of the finite element heterogeneous multiscale method for a class of quasilinear elliptic homogenization problems of nonmonotone type is proposed. We obtain optimal convergence results for dimension d ≤ 3. Our results, which also take into account the microscale discretization, are valid for both simplicial and quadrilateral finite elements. Optimal a-priori error estimates are obta...
متن کاملLinearized Numerical Homogenization Method for Nonlinear Monotone Parabolic Multiscale Problems
We introduce and analyze an efficient numerical homogenization method for a class of nonlinear parabolic problems of monotone type in highly oscillatory media. The new scheme avoids costly Newton iterations and is linear at both the macroscopic and the microscopic scales. It can be interpreted as a linearized version of a standard nonlinear homogenization method. We prove the stability of the m...
متن کاملHeterogeneous multiscale finite element methods for advection-diffusion and nonlinear elliptic multiscale problems
who could not live to see me concluding this thesis, but who always told me that he strongly believes in me and that I could accomplish what ever I want to do. Acknowledgements First of all, I sincerely thank my supervisor Prof. Dr. Mario Ohlberger for his offer to join his newly formed working group in Münster, when I finished my Diploma thesis back in 2007. I would like to thank him for the i...
متن کاملA Framework for Adaptive Multiscale Methods for Elliptic Problems
We describe a projection framework for developing adaptive multiscale methods for computing approximate solutions to elliptic boundary value problems. The framework is consistent with homogenization when there is scale separation. We introduce an adaptive form of the finite element algorithms for solving problems with no clear scale separation. We present numerical simulations demonstrating the...
متن کاملReduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems
A reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) for a class of nonlinear homogenization elliptic problems of nonmonotone type is introduced. In this approach, the solutions of the micro problems needed to estimate the macroscopic data of the homogenized problem are selected by a Greedy algorithm and computed in an offline stage. It is shown that the use of reduced bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012